Extensions 1→N→G→Q→1 with N=C3×C4○D4 and Q=C22

Direct product G=N×Q with N=C3×C4○D4 and Q=C22
dρLabelID
C2×C6×C4○D496C2xC6xC4oD4192,1533

Semidirect products G=N:Q with N=C3×C4○D4 and Q=C22
extensionφ:Q→Out NdρLabelID
(C3×C4○D4)⋊1C22 = S3×C4○D8φ: C22/C1C22 ⊆ Out C3×C4○D4484(C3xC4oD4):1C2^2192,1326
(C3×C4○D4)⋊2C22 = SD16⋊D6φ: C22/C1C22 ⊆ Out C3×C4○D4484(C3xC4oD4):2C2^2192,1327
(C3×C4○D4)⋊3C22 = D815D6φ: C22/C1C22 ⊆ Out C3×C4○D4484+(C3xC4oD4):3C2^2192,1328
(C3×C4○D4)⋊4C22 = D811D6φ: C22/C1C22 ⊆ Out C3×C4○D4484(C3xC4oD4):4C2^2192,1329
(C3×C4○D4)⋊5C22 = S3×C8⋊C22φ: C22/C1C22 ⊆ Out C3×C4○D4248+(C3xC4oD4):5C2^2192,1331
(C3×C4○D4)⋊6C22 = D85D6φ: C22/C1C22 ⊆ Out C3×C4○D4488+(C3xC4oD4):6C2^2192,1333
(C3×C4○D4)⋊7C22 = D86D6φ: C22/C1C22 ⊆ Out C3×C4○D4488-(C3xC4oD4):7C2^2192,1334
(C3×C4○D4)⋊8C22 = D12.32C23φ: C22/C1C22 ⊆ Out C3×C4○D4488+(C3xC4oD4):8C2^2192,1394
(C3×C4○D4)⋊9C22 = D12.34C23φ: C22/C1C22 ⊆ Out C3×C4○D4488+(C3xC4oD4):9C2^2192,1396
(C3×C4○D4)⋊10C22 = S3×2+ 1+4φ: C22/C1C22 ⊆ Out C3×C4○D4248+(C3xC4oD4):10C2^2192,1524
(C3×C4○D4)⋊11C22 = D6.C24φ: C22/C1C22 ⊆ Out C3×C4○D4488-(C3xC4oD4):11C2^2192,1525
(C3×C4○D4)⋊12C22 = S3×2- 1+4φ: C22/C1C22 ⊆ Out C3×C4○D4488-(C3xC4oD4):12C2^2192,1526
(C3×C4○D4)⋊13C22 = D12.39C23φ: C22/C1C22 ⊆ Out C3×C4○D4488+(C3xC4oD4):13C2^2192,1527
(C3×C4○D4)⋊14C22 = C3×D4○D8φ: C22/C1C22 ⊆ Out C3×C4○D4484(C3xC4oD4):14C2^2192,1465
(C3×C4○D4)⋊15C22 = C3×D4○SD16φ: C22/C1C22 ⊆ Out C3×C4○D4484(C3xC4oD4):15C2^2192,1466
(C3×C4○D4)⋊16C22 = C2×D4⋊D6φ: C22/C2C2 ⊆ Out C3×C4○D448(C3xC4oD4):16C2^2192,1379
(C3×C4○D4)⋊17C22 = C2×Q8.13D6φ: C22/C2C2 ⊆ Out C3×C4○D496(C3xC4oD4):17C2^2192,1380
(C3×C4○D4)⋊18C22 = C12.C24φ: C22/C2C2 ⊆ Out C3×C4○D4484(C3xC4oD4):18C2^2192,1381
(C3×C4○D4)⋊19C22 = C2×S3×C4○D4φ: C22/C2C2 ⊆ Out C3×C4○D448(C3xC4oD4):19C2^2192,1520
(C3×C4○D4)⋊20C22 = C2×D4○D12φ: C22/C2C2 ⊆ Out C3×C4○D448(C3xC4oD4):20C2^2192,1521
(C3×C4○D4)⋊21C22 = C2×Q8○D12φ: C22/C2C2 ⊆ Out C3×C4○D496(C3xC4oD4):21C2^2192,1522
(C3×C4○D4)⋊22C22 = C6.C25φ: C22/C2C2 ⊆ Out C3×C4○D4484(C3xC4oD4):22C2^2192,1523
(C3×C4○D4)⋊23C22 = C6×C4○D8φ: C22/C2C2 ⊆ Out C3×C4○D496(C3xC4oD4):23C2^2192,1461
(C3×C4○D4)⋊24C22 = C6×C8⋊C22φ: C22/C2C2 ⊆ Out C3×C4○D448(C3xC4oD4):24C2^2192,1462
(C3×C4○D4)⋊25C22 = C3×D8⋊C22φ: C22/C2C2 ⊆ Out C3×C4○D4484(C3xC4oD4):25C2^2192,1464
(C3×C4○D4)⋊26C22 = C6×2+ 1+4φ: C22/C2C2 ⊆ Out C3×C4○D448(C3xC4oD4):26C2^2192,1534
(C3×C4○D4)⋊27C22 = C6×2- 1+4φ: C22/C2C2 ⊆ Out C3×C4○D496(C3xC4oD4):27C2^2192,1535
(C3×C4○D4)⋊28C22 = C3×C2.C25φ: trivial image484(C3xC4oD4):28C2^2192,1536

Non-split extensions G=N.Q with N=C3×C4○D4 and Q=C22
extensionφ:Q→Out NdρLabelID
(C3×C4○D4).1C22 = S3×C4≀C2φ: C22/C1C22 ⊆ Out C3×C4○D4244(C3xC4oD4).1C2^2192,379
(C3×C4○D4).2C22 = C423D6φ: C22/C1C22 ⊆ Out C3×C4○D4484(C3xC4oD4).2C2^2192,380
(C3×C4○D4).3C22 = Q85D12φ: C22/C1C22 ⊆ Out C3×C4○D4244+(C3xC4oD4).3C2^2192,381
(C3×C4○D4).4C22 = M4(2).22D6φ: C22/C1C22 ⊆ Out C3×C4○D4484(C3xC4oD4).4C2^2192,382
(C3×C4○D4).5C22 = C42.196D6φ: C22/C1C22 ⊆ Out C3×C4○D4484(C3xC4oD4).5C2^2192,383
(C3×C4○D4).6C22 = C425D6φ: C22/C1C22 ⊆ Out C3×C4○D4484(C3xC4oD4).6C2^2192,384
(C3×C4○D4).7C22 = Q8.14D12φ: C22/C1C22 ⊆ Out C3×C4○D4484-(C3xC4oD4).7C2^2192,385
(C3×C4○D4).8C22 = D4.10D12φ: C22/C1C22 ⊆ Out C3×C4○D4484(C3xC4oD4).8C2^2192,386
(C3×C4○D4).9C22 = D85Dic3φ: C22/C1C22 ⊆ Out C3×C4○D4484(C3xC4oD4).9C2^2192,755
(C3×C4○D4).10C22 = D84Dic3φ: C22/C1C22 ⊆ Out C3×C4○D4484(C3xC4oD4).10C2^2192,756
(C3×C4○D4).11C22 = D1218D4φ: C22/C1C22 ⊆ Out C3×C4○D4248+(C3xC4oD4).11C2^2192,757
(C3×C4○D4).12C22 = M4(2).D6φ: C22/C1C22 ⊆ Out C3×C4○D4488+(C3xC4oD4).12C2^2192,758
(C3×C4○D4).13C22 = M4(2).13D6φ: C22/C1C22 ⊆ Out C3×C4○D4488-(C3xC4oD4).13C2^2192,759
(C3×C4○D4).14C22 = D12.38D4φ: C22/C1C22 ⊆ Out C3×C4○D4488-(C3xC4oD4).14C2^2192,760
(C3×C4○D4).15C22 = D12.39D4φ: C22/C1C22 ⊆ Out C3×C4○D4488+(C3xC4oD4).15C2^2192,761
(C3×C4○D4).16C22 = M4(2).15D6φ: C22/C1C22 ⊆ Out C3×C4○D4488+(C3xC4oD4).16C2^2192,762
(C3×C4○D4).17C22 = M4(2).16D6φ: C22/C1C22 ⊆ Out C3×C4○D4968-(C3xC4oD4).17C2^2192,763
(C3×C4○D4).18C22 = D12.40D4φ: C22/C1C22 ⊆ Out C3×C4○D4488-(C3xC4oD4).18C2^2192,764
(C3×C4○D4).19C22 = 2+ 1+46S3φ: C22/C1C22 ⊆ Out C3×C4○D4248+(C3xC4oD4).19C2^2192,800
(C3×C4○D4).20C22 = 2+ 1+4.4S3φ: C22/C1C22 ⊆ Out C3×C4○D4488-(C3xC4oD4).20C2^2192,801
(C3×C4○D4).21C22 = 2- 1+44S3φ: C22/C1C22 ⊆ Out C3×C4○D4488+(C3xC4oD4).21C2^2192,804
(C3×C4○D4).22C22 = 2- 1+4.2S3φ: C22/C1C22 ⊆ Out C3×C4○D4488-(C3xC4oD4).22C2^2192,805
(C3×C4○D4).23C22 = D8.10D6φ: C22/C1C22 ⊆ Out C3×C4○D4964-(C3xC4oD4).23C2^2192,1330
(C3×C4○D4).24C22 = D84D6φ: C22/C1C22 ⊆ Out C3×C4○D4488-(C3xC4oD4).24C2^2192,1332
(C3×C4○D4).25C22 = S3×C8.C22φ: C22/C1C22 ⊆ Out C3×C4○D4488-(C3xC4oD4).25C2^2192,1335
(C3×C4○D4).26C22 = D24⋊C22φ: C22/C1C22 ⊆ Out C3×C4○D4488+(C3xC4oD4).26C2^2192,1336
(C3×C4○D4).27C22 = C24.C23φ: C22/C1C22 ⊆ Out C3×C4○D4488+(C3xC4oD4).27C2^2192,1337
(C3×C4○D4).28C22 = SD16.D6φ: C22/C1C22 ⊆ Out C3×C4○D4968-(C3xC4oD4).28C2^2192,1338
(C3×C4○D4).29C22 = D12.33C23φ: C22/C1C22 ⊆ Out C3×C4○D4488-(C3xC4oD4).29C2^2192,1395
(C3×C4○D4).30C22 = D12.35C23φ: C22/C1C22 ⊆ Out C3×C4○D4968-(C3xC4oD4).30C2^2192,1397
(C3×C4○D4).31C22 = C3×D44D4φ: C22/C1C22 ⊆ Out C3×C4○D4244(C3xC4oD4).31C2^2192,886
(C3×C4○D4).32C22 = C3×D4.8D4φ: C22/C1C22 ⊆ Out C3×C4○D4484(C3xC4oD4).32C2^2192,887
(C3×C4○D4).33C22 = C3×D4.9D4φ: C22/C1C22 ⊆ Out C3×C4○D4484(C3xC4oD4).33C2^2192,888
(C3×C4○D4).34C22 = C3×D4.10D4φ: C22/C1C22 ⊆ Out C3×C4○D4484(C3xC4oD4).34C2^2192,889
(C3×C4○D4).35C22 = C3×Q8○D8φ: C22/C1C22 ⊆ Out C3×C4○D4964(C3xC4oD4).35C2^2192,1467
(C3×C4○D4).36C22 = Q8.8D12φ: C22/C2C2 ⊆ Out C3×C4○D4484(C3xC4oD4).36C2^2192,700
(C3×C4○D4).37C22 = Q8.9D12φ: C22/C2C2 ⊆ Out C3×C4○D4484+(C3xC4oD4).37C2^2192,701
(C3×C4○D4).38C22 = Q8.10D12φ: C22/C2C2 ⊆ Out C3×C4○D4964-(C3xC4oD4).38C2^2192,702
(C3×C4○D4).39C22 = C24.100D4φ: C22/C2C2 ⊆ Out C3×C4○D4484(C3xC4oD4).39C2^2192,703
(C3×C4○D4).40C22 = C24.54D4φ: C22/C2C2 ⊆ Out C3×C4○D4484(C3xC4oD4).40C2^2192,704
(C3×C4○D4).41C22 = C2×Q83Dic3φ: C22/C2C2 ⊆ Out C3×C4○D448(C3xC4oD4).41C2^2192,794
(C3×C4○D4).42C22 = (C6×D4)⋊9C4φ: C22/C2C2 ⊆ Out C3×C4○D4484(C3xC4oD4).42C2^2192,795
(C3×C4○D4).43C22 = S3×C8○D4φ: C22/C2C2 ⊆ Out C3×C4○D4484(C3xC4oD4).43C2^2192,1308
(C3×C4○D4).44C22 = M4(2)⋊28D6φ: C22/C2C2 ⊆ Out C3×C4○D4484(C3xC4oD4).44C2^2192,1309
(C3×C4○D4).45C22 = D4.11D12φ: C22/C2C2 ⊆ Out C3×C4○D4484(C3xC4oD4).45C2^2192,1310
(C3×C4○D4).46C22 = D4.12D12φ: C22/C2C2 ⊆ Out C3×C4○D4484+(C3xC4oD4).46C2^2192,1311
(C3×C4○D4).47C22 = D4.13D12φ: C22/C2C2 ⊆ Out C3×C4○D4964-(C3xC4oD4).47C2^2192,1312
(C3×C4○D4).48C22 = C2×D4.Dic3φ: C22/C2C2 ⊆ Out C3×C4○D496(C3xC4oD4).48C2^2192,1377
(C3×C4○D4).49C22 = C12.76C24φ: C22/C2C2 ⊆ Out C3×C4○D4484(C3xC4oD4).49C2^2192,1378
(C3×C4○D4).50C22 = C2×Q8.14D6φ: C22/C2C2 ⊆ Out C3×C4○D496(C3xC4oD4).50C2^2192,1382
(C3×C4○D4).51C22 = C6×C4≀C2φ: C22/C2C2 ⊆ Out C3×C4○D448(C3xC4oD4).51C2^2192,853
(C3×C4○D4).52C22 = C3×C42⋊C22φ: C22/C2C2 ⊆ Out C3×C4○D4484(C3xC4oD4).52C2^2192,854
(C3×C4○D4).53C22 = C3×C8○D8φ: C22/C2C2 ⊆ Out C3×C4○D4482(C3xC4oD4).53C2^2192,876
(C3×C4○D4).54C22 = C3×C8.26D4φ: C22/C2C2 ⊆ Out C3×C4○D4484(C3xC4oD4).54C2^2192,877
(C3×C4○D4).55C22 = C3×D4.3D4φ: C22/C2C2 ⊆ Out C3×C4○D4484(C3xC4oD4).55C2^2192,904
(C3×C4○D4).56C22 = C3×D4.4D4φ: C22/C2C2 ⊆ Out C3×C4○D4484(C3xC4oD4).56C2^2192,905
(C3×C4○D4).57C22 = C3×D4.5D4φ: C22/C2C2 ⊆ Out C3×C4○D4964(C3xC4oD4).57C2^2192,906
(C3×C4○D4).58C22 = C6×C8.C22φ: C22/C2C2 ⊆ Out C3×C4○D496(C3xC4oD4).58C2^2192,1463
(C3×C4○D4).59C22 = C6×C8○D4φ: trivial image96(C3xC4oD4).59C2^2192,1456
(C3×C4○D4).60C22 = C3×Q8○M4(2)φ: trivial image484(C3xC4oD4).60C2^2192,1457

׿
×
𝔽