extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×C4○D4)⋊1C22 = S3×C4○D8 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4):1C2^2 | 192,1326 |
(C3×C4○D4)⋊2C22 = SD16⋊D6 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4):2C2^2 | 192,1327 |
(C3×C4○D4)⋊3C22 = D8⋊15D6 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 48 | 4+ | (C3xC4oD4):3C2^2 | 192,1328 |
(C3×C4○D4)⋊4C22 = D8⋊11D6 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4):4C2^2 | 192,1329 |
(C3×C4○D4)⋊5C22 = S3×C8⋊C22 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 24 | 8+ | (C3xC4oD4):5C2^2 | 192,1331 |
(C3×C4○D4)⋊6C22 = D8⋊5D6 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 48 | 8+ | (C3xC4oD4):6C2^2 | 192,1333 |
(C3×C4○D4)⋊7C22 = D8⋊6D6 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 48 | 8- | (C3xC4oD4):7C2^2 | 192,1334 |
(C3×C4○D4)⋊8C22 = D12.32C23 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 48 | 8+ | (C3xC4oD4):8C2^2 | 192,1394 |
(C3×C4○D4)⋊9C22 = D12.34C23 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 48 | 8+ | (C3xC4oD4):9C2^2 | 192,1396 |
(C3×C4○D4)⋊10C22 = S3×2+ 1+4 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 24 | 8+ | (C3xC4oD4):10C2^2 | 192,1524 |
(C3×C4○D4)⋊11C22 = D6.C24 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 48 | 8- | (C3xC4oD4):11C2^2 | 192,1525 |
(C3×C4○D4)⋊12C22 = S3×2- 1+4 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 48 | 8- | (C3xC4oD4):12C2^2 | 192,1526 |
(C3×C4○D4)⋊13C22 = D12.39C23 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 48 | 8+ | (C3xC4oD4):13C2^2 | 192,1527 |
(C3×C4○D4)⋊14C22 = C3×D4○D8 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4):14C2^2 | 192,1465 |
(C3×C4○D4)⋊15C22 = C3×D4○SD16 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4):15C2^2 | 192,1466 |
(C3×C4○D4)⋊16C22 = C2×D4⋊D6 | φ: C22/C2 → C2 ⊆ Out C3×C4○D4 | 48 | | (C3xC4oD4):16C2^2 | 192,1379 |
(C3×C4○D4)⋊17C22 = C2×Q8.13D6 | φ: C22/C2 → C2 ⊆ Out C3×C4○D4 | 96 | | (C3xC4oD4):17C2^2 | 192,1380 |
(C3×C4○D4)⋊18C22 = C12.C24 | φ: C22/C2 → C2 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4):18C2^2 | 192,1381 |
(C3×C4○D4)⋊19C22 = C2×S3×C4○D4 | φ: C22/C2 → C2 ⊆ Out C3×C4○D4 | 48 | | (C3xC4oD4):19C2^2 | 192,1520 |
(C3×C4○D4)⋊20C22 = C2×D4○D12 | φ: C22/C2 → C2 ⊆ Out C3×C4○D4 | 48 | | (C3xC4oD4):20C2^2 | 192,1521 |
(C3×C4○D4)⋊21C22 = C2×Q8○D12 | φ: C22/C2 → C2 ⊆ Out C3×C4○D4 | 96 | | (C3xC4oD4):21C2^2 | 192,1522 |
(C3×C4○D4)⋊22C22 = C6.C25 | φ: C22/C2 → C2 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4):22C2^2 | 192,1523 |
(C3×C4○D4)⋊23C22 = C6×C4○D8 | φ: C22/C2 → C2 ⊆ Out C3×C4○D4 | 96 | | (C3xC4oD4):23C2^2 | 192,1461 |
(C3×C4○D4)⋊24C22 = C6×C8⋊C22 | φ: C22/C2 → C2 ⊆ Out C3×C4○D4 | 48 | | (C3xC4oD4):24C2^2 | 192,1462 |
(C3×C4○D4)⋊25C22 = C3×D8⋊C22 | φ: C22/C2 → C2 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4):25C2^2 | 192,1464 |
(C3×C4○D4)⋊26C22 = C6×2+ 1+4 | φ: C22/C2 → C2 ⊆ Out C3×C4○D4 | 48 | | (C3xC4oD4):26C2^2 | 192,1534 |
(C3×C4○D4)⋊27C22 = C6×2- 1+4 | φ: C22/C2 → C2 ⊆ Out C3×C4○D4 | 96 | | (C3xC4oD4):27C2^2 | 192,1535 |
(C3×C4○D4)⋊28C22 = C3×C2.C25 | φ: trivial image | 48 | 4 | (C3xC4oD4):28C2^2 | 192,1536 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×C4○D4).1C22 = S3×C4≀C2 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 24 | 4 | (C3xC4oD4).1C2^2 | 192,379 |
(C3×C4○D4).2C22 = C42⋊3D6 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4).2C2^2 | 192,380 |
(C3×C4○D4).3C22 = Q8⋊5D12 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 24 | 4+ | (C3xC4oD4).3C2^2 | 192,381 |
(C3×C4○D4).4C22 = M4(2).22D6 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4).4C2^2 | 192,382 |
(C3×C4○D4).5C22 = C42.196D6 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4).5C2^2 | 192,383 |
(C3×C4○D4).6C22 = C42⋊5D6 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4).6C2^2 | 192,384 |
(C3×C4○D4).7C22 = Q8.14D12 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 48 | 4- | (C3xC4oD4).7C2^2 | 192,385 |
(C3×C4○D4).8C22 = D4.10D12 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4).8C2^2 | 192,386 |
(C3×C4○D4).9C22 = D8⋊5Dic3 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4).9C2^2 | 192,755 |
(C3×C4○D4).10C22 = D8⋊4Dic3 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4).10C2^2 | 192,756 |
(C3×C4○D4).11C22 = D12⋊18D4 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 24 | 8+ | (C3xC4oD4).11C2^2 | 192,757 |
(C3×C4○D4).12C22 = M4(2).D6 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 48 | 8+ | (C3xC4oD4).12C2^2 | 192,758 |
(C3×C4○D4).13C22 = M4(2).13D6 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 48 | 8- | (C3xC4oD4).13C2^2 | 192,759 |
(C3×C4○D4).14C22 = D12.38D4 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 48 | 8- | (C3xC4oD4).14C2^2 | 192,760 |
(C3×C4○D4).15C22 = D12.39D4 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 48 | 8+ | (C3xC4oD4).15C2^2 | 192,761 |
(C3×C4○D4).16C22 = M4(2).15D6 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 48 | 8+ | (C3xC4oD4).16C2^2 | 192,762 |
(C3×C4○D4).17C22 = M4(2).16D6 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 96 | 8- | (C3xC4oD4).17C2^2 | 192,763 |
(C3×C4○D4).18C22 = D12.40D4 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 48 | 8- | (C3xC4oD4).18C2^2 | 192,764 |
(C3×C4○D4).19C22 = 2+ 1+4⋊6S3 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 24 | 8+ | (C3xC4oD4).19C2^2 | 192,800 |
(C3×C4○D4).20C22 = 2+ 1+4.4S3 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 48 | 8- | (C3xC4oD4).20C2^2 | 192,801 |
(C3×C4○D4).21C22 = 2- 1+4⋊4S3 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 48 | 8+ | (C3xC4oD4).21C2^2 | 192,804 |
(C3×C4○D4).22C22 = 2- 1+4.2S3 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 48 | 8- | (C3xC4oD4).22C2^2 | 192,805 |
(C3×C4○D4).23C22 = D8.10D6 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 96 | 4- | (C3xC4oD4).23C2^2 | 192,1330 |
(C3×C4○D4).24C22 = D8⋊4D6 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 48 | 8- | (C3xC4oD4).24C2^2 | 192,1332 |
(C3×C4○D4).25C22 = S3×C8.C22 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 48 | 8- | (C3xC4oD4).25C2^2 | 192,1335 |
(C3×C4○D4).26C22 = D24⋊C22 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 48 | 8+ | (C3xC4oD4).26C2^2 | 192,1336 |
(C3×C4○D4).27C22 = C24.C23 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 48 | 8+ | (C3xC4oD4).27C2^2 | 192,1337 |
(C3×C4○D4).28C22 = SD16.D6 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 96 | 8- | (C3xC4oD4).28C2^2 | 192,1338 |
(C3×C4○D4).29C22 = D12.33C23 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 48 | 8- | (C3xC4oD4).29C2^2 | 192,1395 |
(C3×C4○D4).30C22 = D12.35C23 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 96 | 8- | (C3xC4oD4).30C2^2 | 192,1397 |
(C3×C4○D4).31C22 = C3×D4⋊4D4 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 24 | 4 | (C3xC4oD4).31C2^2 | 192,886 |
(C3×C4○D4).32C22 = C3×D4.8D4 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4).32C2^2 | 192,887 |
(C3×C4○D4).33C22 = C3×D4.9D4 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4).33C2^2 | 192,888 |
(C3×C4○D4).34C22 = C3×D4.10D4 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4).34C2^2 | 192,889 |
(C3×C4○D4).35C22 = C3×Q8○D8 | φ: C22/C1 → C22 ⊆ Out C3×C4○D4 | 96 | 4 | (C3xC4oD4).35C2^2 | 192,1467 |
(C3×C4○D4).36C22 = Q8.8D12 | φ: C22/C2 → C2 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4).36C2^2 | 192,700 |
(C3×C4○D4).37C22 = Q8.9D12 | φ: C22/C2 → C2 ⊆ Out C3×C4○D4 | 48 | 4+ | (C3xC4oD4).37C2^2 | 192,701 |
(C3×C4○D4).38C22 = Q8.10D12 | φ: C22/C2 → C2 ⊆ Out C3×C4○D4 | 96 | 4- | (C3xC4oD4).38C2^2 | 192,702 |
(C3×C4○D4).39C22 = C24.100D4 | φ: C22/C2 → C2 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4).39C2^2 | 192,703 |
(C3×C4○D4).40C22 = C24.54D4 | φ: C22/C2 → C2 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4).40C2^2 | 192,704 |
(C3×C4○D4).41C22 = C2×Q8⋊3Dic3 | φ: C22/C2 → C2 ⊆ Out C3×C4○D4 | 48 | | (C3xC4oD4).41C2^2 | 192,794 |
(C3×C4○D4).42C22 = (C6×D4)⋊9C4 | φ: C22/C2 → C2 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4).42C2^2 | 192,795 |
(C3×C4○D4).43C22 = S3×C8○D4 | φ: C22/C2 → C2 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4).43C2^2 | 192,1308 |
(C3×C4○D4).44C22 = M4(2)⋊28D6 | φ: C22/C2 → C2 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4).44C2^2 | 192,1309 |
(C3×C4○D4).45C22 = D4.11D12 | φ: C22/C2 → C2 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4).45C2^2 | 192,1310 |
(C3×C4○D4).46C22 = D4.12D12 | φ: C22/C2 → C2 ⊆ Out C3×C4○D4 | 48 | 4+ | (C3xC4oD4).46C2^2 | 192,1311 |
(C3×C4○D4).47C22 = D4.13D12 | φ: C22/C2 → C2 ⊆ Out C3×C4○D4 | 96 | 4- | (C3xC4oD4).47C2^2 | 192,1312 |
(C3×C4○D4).48C22 = C2×D4.Dic3 | φ: C22/C2 → C2 ⊆ Out C3×C4○D4 | 96 | | (C3xC4oD4).48C2^2 | 192,1377 |
(C3×C4○D4).49C22 = C12.76C24 | φ: C22/C2 → C2 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4).49C2^2 | 192,1378 |
(C3×C4○D4).50C22 = C2×Q8.14D6 | φ: C22/C2 → C2 ⊆ Out C3×C4○D4 | 96 | | (C3xC4oD4).50C2^2 | 192,1382 |
(C3×C4○D4).51C22 = C6×C4≀C2 | φ: C22/C2 → C2 ⊆ Out C3×C4○D4 | 48 | | (C3xC4oD4).51C2^2 | 192,853 |
(C3×C4○D4).52C22 = C3×C42⋊C22 | φ: C22/C2 → C2 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4).52C2^2 | 192,854 |
(C3×C4○D4).53C22 = C3×C8○D8 | φ: C22/C2 → C2 ⊆ Out C3×C4○D4 | 48 | 2 | (C3xC4oD4).53C2^2 | 192,876 |
(C3×C4○D4).54C22 = C3×C8.26D4 | φ: C22/C2 → C2 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4).54C2^2 | 192,877 |
(C3×C4○D4).55C22 = C3×D4.3D4 | φ: C22/C2 → C2 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4).55C2^2 | 192,904 |
(C3×C4○D4).56C22 = C3×D4.4D4 | φ: C22/C2 → C2 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4).56C2^2 | 192,905 |
(C3×C4○D4).57C22 = C3×D4.5D4 | φ: C22/C2 → C2 ⊆ Out C3×C4○D4 | 96 | 4 | (C3xC4oD4).57C2^2 | 192,906 |
(C3×C4○D4).58C22 = C6×C8.C22 | φ: C22/C2 → C2 ⊆ Out C3×C4○D4 | 96 | | (C3xC4oD4).58C2^2 | 192,1463 |
(C3×C4○D4).59C22 = C6×C8○D4 | φ: trivial image | 96 | | (C3xC4oD4).59C2^2 | 192,1456 |
(C3×C4○D4).60C22 = C3×Q8○M4(2) | φ: trivial image | 48 | 4 | (C3xC4oD4).60C2^2 | 192,1457 |